手机浏览器扫描二维码访问
292章
程诺的寒假假期,在与穆冷的吵吵闹闹中正式开始。
在大学忙活了一整个学期后,程诺终于有时间休息一下。
先在家里咸鱼般躺尸了好几天之后,舒服够了之后,程诺又不得不爬起来开始他的学习进程。
《复变函数》和《常微分方程》这两门在大学生数竞中需要用到的课程,还需要程诺在过年之前自学完成。
打了一辆车,程诺直奔青城市最大的书店。
本来想着只买复变函数和常微分方程这两本书的,不过想到索性都来了,不如一次性多买点的想法,程诺又先后从书架上拿了十几本书,一块结账。
《实变函数与泛函分析》、《抽象代数》、《概率论与数理统计》、《拓扑学》、《偏微分方程》……
这些都是数学系在大学四年里将会学到的课程。
抱着十几斤重的一摞书回到自己卧室。
卧室书架上那几百本高中复习书已经被江兰清理一空,此刻显的有些空荡。程诺将十几本书整齐的放在书架上,轻轻笑了笑。
以他的学习速度,估计这个书架,会很快再次被摆满吧!
学习吧,骚年!
泡了一杯咖啡,程诺坐在书桌前,打开《复变函数》这本书的扉页。
论难度,复变函数自然是比大一学的高代、数分什么的要高上一个档次。这么课程,是以导数和积分作为出发点,渐渐发展出来的。
作为函数论分支的一种,比较实变函数来说,复变函数是以复数域作为一个自变量,进行各种函数运算。
而这本教材书主要是通过三个方面讲解有关复变函数的内容。
解析函数、共性映照、rieann曲面。
程诺手边就放着草稿纸,一边看书,也一边计算着书中的定理。
例如cauchy-goursat(柯西-古沙)定理,就是指一个函数f(z)在区域u上有定理,g(z)称为f(z)在区域u上的解析原函数,若g(z)在u上解析且g(z)=f(z)在u上处处成立。
看完这个定理后,程诺并没有直接看下面关于定理的证明过程,而是直接在草稿纸上自己证明。
【设γ:[a,b]→c为逐段光滑曲线,参数方程γ(t),a≤t≤b,若f(x)在γ上连续,则∫f(z)dz=∫(a,b)f(γ(t)γ(t)dt,……】
证毕,程诺翻开教材书比对。思路完全相同。
哇咔咔!果然,大数学家柯西和我的思路一样呢!
抱着美滋滋的心情,程诺继续往下看。
重生麻雀,目标:三足金乌 位面系统之崛起 怪兽电影大冒险 圣心双雄 影视世界,已成赢家 漫威世界的御主 禁地求生,开局获得钟离模板! 洪荒二郎传 视频通动漫,剪辑十大装逼人物 长风不南归 拥有时空门的修仙家族 开局我穿越成了大明星 修仙从古墓开始 综漫:为了养活妹妹,去打工吧! 四合院:开局迎娶于莉 网游之大盗贼 末世:开局获得篇章系统 李云龙,看,这是什么 我的师长冯天魁 港片:我是幕后大枭雄
潜龙邪婿又名护花大使简介emspemsp潜龙邪婿又名护花大使是醉酒千愁的经典都市言情类作品,潜龙邪婿又名护花大使主要讲述了入赘?小事!堂堂七尺男儿,则能容人说三道四,顺我者昌逆我者亡醉酒千愁最新鼎力大作,年度必看都市言情...
大佬她氪金种田简介emspemsp关于大佬她氪金种田别人种田赚钱氪金,我家女主氪金只为种田,别人男主霸道总裁,我家男主中二小奶狗。明知他故意在闹,她却放肆纵容任他笑。...
宰相毒妻夫君,我们不熟简介emspemsp宰相毒妻夫君,我们不熟是吉祥火火的经典其他类型类作品,宰相毒妻夫君,我们不熟主要讲述了宰相毒妻夫君,我们不熟吉祥火火最新鼎力大作,年度必看其他类型。禁忌书屋提供宰相毒妻夫君,我们不...
超级系统之足坛巨星简介emspemsp这是我的梦,在球场挥洒汗水与热血,向着至高的巅峰前行!废柴少年,获得神秘系统,从默默无闻的足坛小子,一跃成为世界级球星!伯纳乌,我用双脚将这片球场彻底征服!海棠书屋(po18yuvip)提供超级系统之足...
时代大亨简介emspemsp关于时代大亨刘北意外重返1990年,国内经济刚刚坐上快速列车,金融证券,进出口贸易,房地产,互联网等风口行业,一个都不能错过!既然重活一世,那就扭转乾坤,走上人生巅峰!...
DNF从打团开始简介emspemsp关于DNF从打团开始60版本无疑是众多老玩家时常夸夸其谈的版本。70版本的250套装多少人直到80版本都没有做出来。80到85版本,无疑是DNF这款经典格斗类2D游戏的低估。直到安徒恩的出现,86版本降临,无疑,这...