手机浏览器扫描二维码访问
我现在怀疑一件事情,就是很多时候人们总会有夸大其词的这样一种情况,比如像数学,如果你不懂的话,很多人对微积分嘛,就会觉得特别的高深莫测,觉得好像那是好像只有外星人才懂的东西,其实如果你只要认真的看一下的话,就会发现它并没有多复杂,无非就是,我举个例子啊,怎么求一个椭圆的面积?我们知道长方形的面积,用长乘以宽就可以了,三角形的面积,用长乘以宽除以二就是它的面积好的,梯形就是上底加下底,用它们的和乘以高除以二就可以,但是椭圆怎么求呢?我们如何得到它的这个公式呢?我们可以发现椭圆它的,构成椭圆的那条曲线,它的变化是连续的,由此呢,我们可以得出一个结论,就是说它的这种变化嘛,它肯定是有规律的,有某一种它的一种变化的量在这里面,那么,所谓的微积分,就是把这个椭圆嘛,把它将它划分为无数个长方形,这不难吧,这很容易理解,然后分别求这些长方形的面积,这就叫做微分,接着呢,把这些长方形的面积全部加起来,这就是这个椭圆的面积,这就叫做积分,这就是微积分的一个基本的思想,就是这样的,就这么简单,问题就在于我们怎么样来求那一个,长方形的面积呢?我们将它划分为无数的那个长方形,那个长方形到底是多大的呢?这里就涉及到很多的具体的问题,这些问题不是牛顿解决的,也不是莱布尼兹解决的,他们只是发明了,微积分的一种基本的方法,他们没有解决,这个问题,这个问题涉及到无限的问题,什么叫做极限?就是说我们把一个椭圆把它划分为无数个这样的长方形,那么这个长方形到底是多小呢?这里就涉及到一个极限的问题,无限小那么无限到底是什么呢?这个问题一直等到后来的康托尔才解决,但是我们现在不需要解决这样一个问题,我们只需要求到它的那种变化率,就是椭圆的那条曲线,它的变化它有一个变化率,这个变化率就叫做导数,在我们做微积分的时候,经常会要一个求导的问题,所谓的导数其实很简单嘛,就是,我们看到一个椭圆,它的那条曲线在不断的变化,那个变化的是连续的,那么它和那个变化的量就是一个固定的值,这个固定的值就叫做导数,求这个变化率的过程就叫做求导,所以呢,所谓的这些高深莫测的东西并没有那么的神秘,也没有那么的高深莫测,只不过有些人嘛,故作高深而已
比如所谓的黎曼几何?在很多人听来,那简直就是外星人才学得会的东西,其实很简单,就是嘛,我们知道,按照我们普通的几何学,它是在一个平面上的,所以呢,我们得到了一个结论,就是三在平面上的,也就是欧几里的几何,它的三角形的内角和是180度,但是,黎曼几何呢?它不是在一个平面上的,它是在一个曲面上的,也就是说它在一个球上的,很显然的,如果我们在一个球上画出一个三角形,这个三角形的话,就不是我们传统意义上的三角形,也就是说不是我们所讲的那种欧几里德式的几何?所以它就会小于180度,这并不难理解,所以嘛,所谓的o是黎曼几何也没有多么的呃深莫测,然后就是研究这种嘛,在一个非平面几何上非平面上的几何嘛,也就是研究在一个球面上的几何,到底是什么样的,有什么特征,无非就是研究这样的东西啊,我就不相信这样的东西有多么的难以理解,只不过有些人嘛,好像为了表现自己的一种特别的优越感吧,把这些东西说的多么的好像就像一种难以理解的东西一样,其实并不复杂
再比如哲学,在没有学习之哲学之前,很多人提到康德,他的先验哲学那不得了啊,那是这个世界上最为复杂,最为难懂的东西啊,我原来也觉得哇,这东西不得了,那是只有智商高达1000的人才能理解吧,后来读了以后也觉得其实没有那么复杂嘛,甚至可以说蛮简单的,无非就是说嘛,我们所看到的这个世界,我们所看到的这些经验,这些直觉的这些感官所得到的这些东西,要经过我们头脑的某种的一种组合,虽然这样说并不完全是康德的意思,因为在康德看来,我们的头脑中有一种先天的一种形式,这并不是一种多么难以理解的东西啊,其实我觉得其实很简单,你只要从这样的角度去思考康德,那么康德的哲学相当的容易理解,而且你可以自己推出整个康德的哲学体系,就这么简单,但是一两百年以来,所有的人都把康德的哲学看的多么的好像就是难以理解,我只能说这些人就是故作高深,故意给其他的人造成一种,隔离带吧,也就是说以显示自己的一种优越感,好像他懂哲学,你们不懂他就了不起,我读了以后就等于没什么了不起的,哪怕是后来的维特根斯坦或者是海德格,你读了以后我也觉得没有多大了不起,也许是因为自己并没有完全读懂吧,反正我觉得是蛮简单的,多读了一点书的好处,就是对很多所谓的东西都会去魅也就是说呢,觉得没有那么大的魅力了,以后你就会觉得原来也不过如此嘛,所以嘛,很多时候人还是要有一点头脑,多读一点书,就不会被人所愚弄欺骗,比如像数学,我原来觉得什么那个黎曼几何啊,什么拓扑学啊,还有什么什么什么那个群论呐哇,那都是好像,反正我觉得我自己应该是看不懂吧,反正后来就硬着头皮看了一点,原来也没什么了不起的,比如那个群论嘛,就是把一些集合嘛,他们之间研究集合之间的关系就是这样的,这个集合和集合之间有些什么样的特性,有些什么特殊的集合,这又有什么了不起的呢?无非就是把研究的对象改变了一下,我们原来是研究的是数字,后来研究的是那种未知数就是代数嘛,比如xyz之类的,这就是代数嘛,把从数字变到这些未知数xyz这样,然后就是函数在这呢,就带到进入这个有关集合的领域,这有什么了不起的,难道我不可以去研究一下这些集合之间它们特殊的关系吗?这就是群论嘛,这就是伽罗华的一种思想
所以嘛,我看到很多人在网上夸夸其谈,然后说的天花乱坠,说的那些好像特别的高深莫测,难以理解一样,我原来也觉得自己这些东西不是自己所能理解的,特别原来比如一些什么北大清华的学生啊,觉得哎呀,那不得了,那不是自己,那是高不可攀的东西,后来嘛,见得多了,觉得不过如此,特别是看到了很多,比如哈佛麻省理工普林斯顿或者是宾夕法尼亚,还有哥伦比亚斯坦福的那些学生,以后牛津剑桥不过如此嘛,也不是两个眼睛,一个鼻子,两个耳朵吗?看他们答题的话,也不过如此嘛,所以嘛,人还是要多有一点自信,而且呢,去了解一下,了解了看了以后你就会没有了那种,对他们的神话的感觉,知道吧,不要神话他们,比如有的人说现在有一些人,外国人呐,吃饱了饭撑的,这有什么可伟大的呢?什么样的人才会这样说话呢?
请评论一下这篇文章
重生六十年代:空间在手一切我有 马甲女王她大杀四方 灵界天尊之林风 四合院:重生52,我有逆天悟性 重生七五,改变悲惨人生 手握万界红包群,舔狗女配鲨疯了 被抄家,她曝女儿身拉出崽喊父皇 自嗨式少年成长记录 时光流派 六翼精灵 魔法世界种田记 求道, 民间怪谈集 南北赤血录 甄嬛传重生之陵容 暗处的偷偷喜欢 我的女友来自未来! 重生之我有神级侦察术 江山泪:美人劫 种田:女穿男成扶弟魔中那个弟
拜师九叔简介emspemsp关于拜师九叔不知道怎么写简介,就不写了吧,EMMMM还是写一点吧,穿越民国年代,成为僵尸先生九叔的大弟子...
他是全球知名企业陆氏总裁,不近女色,她因身中情蛊而他被迫成为解药,哪曾想,一碰成瘾,从此,万劫不复第一次见面,他压她在地毯,各种非礼胡摸乱碰第二次见面,她被他撞倒在地身边,即将吃干抹尽时,却...
我爱你你打死我都愿意,我失去你了,没有你我活着有什么意思,老天眷顾,又一次相见,再一次失去。又一次相见,我此生只剩下赎罪了,求你,别不要我,怎么样都行,跪起我,打死我,虐死我都行,只求你给我一个赎罪的机会,我不能没有你...
不错,小子,以后跟我混了。拍着雷卫东的肩膀,雷洛笑道。谢谢洛哥!雷卫东一脸的感激。为什么?捂着伤口,雷洛一脸的不相信。对不起洛哥,我是警察。雷卫东道。放心家驹,我不会挖你的墙角。拍着陈家驹的肩膀,雷卫东赌咒发誓。这不是挖墙脚的问题,而是老大你的老婆带着阿美发财,我在家中都快变成煮夫了。陈家驹一脸的苦恼。彭奕行,比枪吗?雷卫东扛着巴雷特问道。滚,我不和子弹会转弯的人比。彭奕行帅气的回答。高进,玩两把吗?雷卫东拿着扑克牌。滚,我不会外挂男玩。星仔这是发生在港综的故事如果您喜欢港综之我是警察,别忘记分享给朋友...
十年前,时之言因为一场意外,结束了自己短暂的一生。十年后,陌生的短信带血的吉他还有那鲜嫩的雏菊花,让当年那个走向地狱的少年,重新出现在了人们的视野中。当红大明星陆瑾,因为年少时犯下的错,一直活在愧疚当中。而来自时之言的复仇,让她重新面对当年的真相,也在痛苦跟自责当中,发现了不一样的线索这是一个悬疑复仇爱情并存的故事,陆瑾在寻找真相的途中,与青梅竹马的江暮,逐渐解开误会,两颗心慢慢靠近,一起面对未知的危险,也通过重重的考验与挫折,与过去的自己和解,走向新的未来!如果您喜欢顶流随时都要崩人设,别忘记分享给朋友...
茯笙是一个许愿即刻成真的人。某个位面,小姑娘出门忘了带伞。她蹲下,看着外面的瓢泼大雨,叹了口气,嘟囔,要是雨能停下来,就好了。话音刚落,阴沉沉的天空瞬间艳阳高照,万里无云。系统!?你做了啥??小姑娘一脸茫然,我只是想雨停系统一定是哪里出了问题。卑微的系统颤抖着开始查原因。又某个位面,小姑娘被绑架。五花大绑地绑在板凳上上,动弹不得。皮肤被勒得红红的,格外地疼。她低头撇了撇嘴,有点委屈,这帮坏人,哼,欺负我,出门是要遭雷劈的。下一秒,刚走出去想买饭的坏人,被天空中一道惊雷劈中,瞬间倒地。众坏人!!!小姑娘立刻被毕恭毕敬地清了出去。最后,某个位面。小姑娘抬头仰望星空,盯着天上的星星,抿了抿唇,小声道,要是他能陪着我,就好了。系统这不可能实现的,我不相信。话音刚落。系统被踹到了一边。小姑娘瞬间被抱住,身后,男人的嗓音轻柔,又带着几分无奈的笑意,笨蛋。我明明,一直在陪着你。小姑娘愣住。一一直都在?男人微微勾唇,不然,谁来满足你的愿望?小姑娘脸一红,有些紧张地抱住了他,唇角微弯,谢谢谢你。不客气,我的夫人。...